
www.manaraa.com

DOCUMENT RESUME

ED 295 620 IR 013 327

AUTHOR Perkins, David; And Others
TITLE Loci of Difficulty in Learning to Program. Technical

Report 86-6.
INSTITUTION EducEtional Technology Center, Cambridge, MA.
SPONS AGENCY National Inst. of Education (DREW), Washington,

D.C.
PUB DATE Jun 86
CONTRACT 400-83-0041
NOTE 22p.; For a related report, see IR 013 324.
PUB TYPE Reports - Research/Technical (143)

EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS Difficulty Level; Error Patterns; High Schools;

*Knowledge Level; *Problem Solving; *Programing; Sez
Differences; Student Attitudes; Teaching Methods

ABSTRACT
To learn more about the specific nature of the

teaching and learning problems involved, researchers conducted a
clinical study of 20 high school students enrolled a BASIC course.
Investigators presented each student with a sequence of eight
programming problems, ranging from easy to difficult. They asked
questions to track student thinking and intervened in student
difficulties with graduated levels of assistance. A coding system was
used to record the type of difficulty students encountered, the
amount of help needed, and the correctness of solutions.
Experimenters noted whether errors were omissions of a necessary
element, inappropriate migrations of an element from one command to
another, errors in sequencing the elements, or other mistakes. Data
analysis provided information about loci of difficulty in three
aspects of programming behavior: attitudes, knowledge base, and
problem-solving strategies. Inadequacies in students' knowledge base
about BASIC were revealed, with most errors occurring at the level of
application. Findings suggest that programming instruction might
place greater emphasis on encouraging students to prompt themselves
with strategic questions about problematic situations, on helping
them achieve more consolidated knowledge of the details of computer
languages, and on addressing attitudinal and confidence factors in
programming. (32 references) (Author/MES)

* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *

***u*

www.manaraa.com

tt,

G
U.S. DEPARTMENT OF EDUCATION

Office of Educational Research and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

116This document has been reproduced as
received from the person or organization
originating it

0 Minor changes have been made to Improve
reproduction quality

Points of view or opintons shit ed in this doctr
ment do not necessarily represent official
OERI position or policy.

LOCI OF DIFFICULTY IN
LEARNING TO PROGRAM
Teschnic4s1 Rampart

June 1986

.14.mg
.51u.

Eacsiissel redesign Oster
Harvard Graduate School of Education

337 Gutman Library Appian Way Cambridge NIA02138
C\-)

BEST COPY AVAILABLE 2

-

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

Beth Wilson

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."

www.manaraa.com

st

LOCI OF DIFFICULTY IN
LEARNING TO PROGRAM
Techallical Report

June 3_986

Mutational Ter balm Center
Harvard Graduate School of Education

337 Gutman Library Appian Way Cambridge MA02138

3 4

www.manaraa.com

Y

Loci of Difficulty in Learning to Program

Technical Report
June 1986

prepared by D. N. Perkins, Fay Martin, and Michael Farady

EMEADMia-k222-11121=2

Betty Biork
Michael Farady
Chris Hancock
Renee Hobbs
Jack MacLeod
Fay Martin
David Perkins

Marie Salah
Nancy Samaria
Paul Shapiro
Rebecca Simmons
Tara Tuck
Evelina Villa
Martha Stone Wiske

Preparation of this report was supported in part by the
Office of Educational Research and Improvement (Contract #
OERI 400-83-0041). Opinions expressed herein are not
necessarily shared by OERI and do not represent Office
policy.

4

www.manaraa.com

LOCI or Dirricusty z

Loci of Difficulty in Learning to Program

The evidence continues to accumulate that students in primary and secondary
school studying programming do not learn to program very well. Studies of

Logo programming conducted at Bank Street showed that students emerged from
instruction of a nondirective sort with very limited mastery of the basics of

Logo (Pea A Kurland, 1984a, 1984b). Linn (1985), reporting man extensive

ourniirof BASIC Instruction, noted that student learning, was quite limited at
most sites, although better results appeared at a few sites with higher
ability students and especially mindful instruction. In a recently completed
study, Bank Street researchers examined the competence of high school
students involved in a two year computer science sequence involving
considerable programming instruction as well as related aspects of computer
use (Kurland, Pea, Clement, 41 Newby, in press). At the end of the
instruction, any students still displayed surprising shortfalls in their
competence.

To be sure, education aspires to greater achievement in virtually every

area of the curriculum. Still, the gap between achievement and aspiration
seems unusually large in the case of programming. Students emerge from many

straightforwardly and seemingly competently conducted programs of instruction

with much more limited mastery than one would have expected. The
circumstances pose a puzzle both for psychology and pedagogy: How to explain
the difficulties of programming that stand in the way of student progress?

One possible answer turns to the demands programming makes on
problem-solving ability. Programming is a problem - solving intensive subject.

While students may manage well enough in many school subjects by learning the

facts and rote procedures and delivering them back in homework and quizzes,
programming instruction routinely asks students to create their own programs

to do a variety of tasks. Accordingly, programming routinely presses
students for a variety of analytical and compositional competencies that
other subjects, as normally taught, do not demand. Paradoxically, most
programming instruction does little to teach such competencies directly;
rarely does programming instruction explicitly address the sorts of
heuristics or managerial strategies that might abet the problem-solving
process. There is some evidence to suggest that when the instruction
indudesexplicit attention to such natters, students do better (Clements,
1985; Clements i Gullo, 1984). Outside the area of programming, there is
evidence to suggest the explicit teaching of heuristics and managerial
strategies can improve problem solving substantially (Schoenfeld, 1982;
Schoenfeld A Herrmann, 1982).

One might also seek an understanding of the difficulties of propimmdng
in a second direction: As well as a problem - solving intensive subject,
progranuing is a precision-intensive subject. An able programmer needs to
know the key commands, understand the purposes that they serve, grasp what
actions they effect in the world of the computer, and respect the syntactic
requirements of their proper use. To be sure, such knowledge is merely the
low-level "database" that supplies information for the higher order problem

solving students of programming need to do. However, it is by no means clear

that students have that "database" well in hand. One conspicuous shortfall

is the difficulties students commonly display in hand-executing given
programs or programs they have already written (Pea & Kurland, 1984a, 1984b;

5

www.manaraa.com

Loci of Difficulty 3

Perkins, Hancock, Hobbs, Martin, A and Simmons, in press). Hand-execution

requires no problem solving; it is a purely algorithmic task calling only for

a precise grasp of shat actions the various commands effect. Yet students

routinely have difficulty with tasks of this sort, demonstrating that the
database of commands and their effects in the world of the computer needs
extension and repair.

Perhaps it is somewhat surprising to think that the low-level knowledge
of commands may be a major source of students' difficulties. But one does
well to remember that the circumstances of programming call for an
exceedingly high accuracy rate. If one recalls with accuracy 90% of the
dates on a history quiz and fails to retrieve or retrieves erroneously the
rest, one has turned in a creditable performance. If one handles with
accuracy only 90% of the commands in a particular program, almost certainly
the program will fail. A computer program is a highly interdependent
structure, where errors in one locale have effects that propagate to spoil

the whole performance of the program. Consequently, although the total
amount of rote information a student needs to master for programming may be
substantially less than that a student needs to master for history or a
foreign language, the fullness of mastery the student requires to do well is

much higher.

In summary, prior research suggesti that programming may prove a
difficult subject for students both because of its problem-solving intensive

character and its precision-intensive character. But such a proposal demands

explication. What sorts of problem - solving strategies might be needed? If

students have trouble mastering commands, what forms does such trouble take?

Can it be said that either problem-solving skills or shortfalls ir knowledge
base lie at the heart of the matter, difficulties with the one primarily
reflecting difficulties with the other?

With such questions as these in mind, we undertook a clinical study of
high school students in the second semester of a BASIC course. We sat with
students as they attempted certain programming problems and helped them in
systematic ways when they encountered difficulties. The students'
interactions with the computer and our interactions with the students were
consolidated into protocols and subjected to several sorts of analyses. The

results illuminate the loci of difficulty in learning to program.

Method

Sub ects

Twenty high school students participated in the study. Ranging from 10th to

12th graders, they consisted of 11 girls and 9 boys. The students were
enrolled in the second semester of an elective first-year BASIC course. They

were all taught by the same teacher, who had a professional level of mastery

of programming. Each student participated for one 45-minute session. The

instruction in the BASIC course seemed clear, solid, and straightforward,
with considerable practice time and individual attention. Presentation of

new commends and concepts proceeded Ina very structured way, with systenatiz

explanation and workbook exercises. The primary student activity was working

through sets of programming problems; the problems tended toward business
matters such as record keeping or processing a data file. Toward the end of

the second semester, the students were studying two-dimensional arrays.

6

www.manaraa.com

Loci of Difficulty 4

Prozramminz tasks

In the experimental sessions, the investigator showed each subject a series

of eight programming problems. The problems were sequenced from relatively
easy to fairly difficult, each new problem building on the one before. The

sequence of eight was based on the FOR-NEXT loop, asking the students to
write programs that would produce various patterns of stars (asterisks) on

the screen. Although the students had been exposed in class to all the
concepts and primitives needed to write the programs, they may not have
encountered them in the context of producing a graphic design.

To convey the character of the problem sequence, we describe several of

the problems. Problem 1 asked for a program that would produce a column of
10 stars; problem 3 called for a program that would ask the user for an input

(a number) and than print a column of that many stars. Problem 4 called for

a program that would ask for an input and then print that many stars
horizontally. Problem 5 requires a program that asked for an input and then

printed a square of stars. With an input of 5, the program would produce:

s e e s .
* * * *

s e e s .
O * * * *

*

Problem 8 called for a program that would print a hollow square of stars
determined by the user's input. With an input of 5, the program would

produce:

Procedure

Each session was held during the student's regular BASIC class period. The

experimenter and student worked together in a separate mousing a Digital

Rainbow personal computer. The experimenter explained the purpose of the
study -- to understand what aspects of programming are easy or hard to learn.

The experimenter explained that there were programming problems for the
student to work on; while the student worked, the experimenter would Iota,
take notes, and help if the student had trouble. The experimenter also
reminded the student that the session would be audiotaped.

The experimenter then presented the sequence ofproblems and asked the
student to choose one to begin that was "not too easy, but not too hard a
challenge." As the student worked, the experimenter watched, recording on
paper the student's code and other notes such as the student's affect during

the session. Occasionally the experimenter asked questions to track the

student's thinking. When the student encountered a difficulty he or es was

7

www.manaraa.com

Loci og uifficuIty 5

unable to resolve alone, the experimenter intervened by asking questions or

providing information. The experimenter worked with the student until the
program rau successfully. Then the student was asked to work on the next

problem in the sequence. This procedure was repeated until time ran out.

When the student encountered a difficulty, the experimenter first asked

questions designed to provoke strategic thinking. We called this type of

question a "prompt." By definition, prompts were questions that did not
require a knowledge of the true nature of the difficulty, questions that in
principle students could have thought to ask themselves. Some typical

prompts were: "1 is the first thing you need to tell the computer to do ? ";

"What does this semicolon do r; "Now would you describe the problem to
yourself?" As the examples suggest, some prompts were general and could be
used in any problem-solving situation, whereas others were specific to
programming. The prompts were generated by the experimenter according to the
experimenter's judgment of the level of specificity needed.

If a couple of prompts did not help the student to overcome the
difficulty, the experimenter offered more specific assistance. This type of

intervention was called a "hint." By definition, Macs were questions or
comments that reflected the experimenter's understanding of the solution. A
hint could be a leading question or a bit of information. Hints sounded like
this: "Can you think of a command to get the computer to ask you for a
number?"; "Your problem is to repeat something several times, so do you know
a command for that?"; "Is there some way you could use a semicolon?"

If a couple of hints did not provoke progress, the experimenter provided
an exact solution to the immediate dilemma so that the student could proceed

with the rest of the programming. Those were called "provides."
Characteristic provides were: "Write INPUT 'How many stars do you want', N";
"use a FOR-NEXT loop"; "Put a semicolon after the print statement." The

experimenter attempted to explain mowers when providing then. Note that not
all "provides" directly gave the student code. For instance, if the
'student's immediate problem was to retrieve the name of a relevant command,
and prompts and hints failed, the experimenter would provide the name of the

command, but not details on how to use it. The experimenter would then wait
to see whether the student could follow through with the command, before
intervening further with prompts, hints, and provides.

The escalations from prompt to hint to provide not only helped the
student but served as a probe of the student's level of mastery and
understanding. The more support the student required, the less the student

could accomplish alone. A successful prompt suggested that the student could

benefit from learning to self-prompt in the same way. At the other extreme,

a provide preccled by several unsuccessful prompts and hints indicated very

limited knowledge and understanding of the particular difficulty.

Although the experimenter generally attempted the progression from
prompts to provides, sometimes the experimenter moved directly to hints or

provides. This occasionally happened by mistake, but more often because the
general performance of the student and the stuckAt's increasing frustration
indicated that more direct help was needed to maintain attention and
involvement.

8

www.manaraa.com

Loci of Difficulty S

Data

Data collected during each session included notes taken by the experimenter,
code written by the student that was transcribed by the experimenter, and an

audiotape of the conversation. The audiotape was transcribed later and the

notes and code interpolated to yield a verbatim protocol of the session.

Coding metal,

The experimenters developed a coding system to apply to the protocols. The

coding system classified the students' success or difficulties with the steps
we identified as necessary to complete the program in question -- the
"critical components" discussed below. The students' success or difficulties

were inferred by the scorers from the students' verbally expressed ideas and
actions at the keyboard that furthered the development of the promoter that
the student hoped would further its development. Comments like "I need some
kind of a loop" or "I can use INPUT" would lead to one or more scores. Side

remarks like, This is a snap" or "This is tough" would not.

The coding system sought to capture three aspects of the students'
programming behavior: (1) the level of organization at which students evinced

a difficulty, for instance overall organization of a program versus details
of the handling of a particular command; (2) how much help a student needed
with a particular step -- none, a prompt, a hint, or a provide; (3) the
correctness of a student's handling of a step -- was it correct, was the
student unable to provide any response, or what sort of error did the
student's response display?

Presenting a sample interaction with a student will facilitate
describing the coding system. For such a sample, suppose that a student is
addressing problem 4, which called for a program to print a horizontal ma
stars of length determined by the user's input. The student recognizes the
need to get information into the program, mentions using READ, and then
appears stuck. The experimenter says, "Can you think of another command you

might use?" The student says, "Oh yeah, INPUT."

Critical components of a program. To facilitate coding students'
responses for each programming problem, we identified those components of a
solution that were, we felt, critical to resolving the problem. For example,

we established four critical components for problem 4: an INPUT statement, a
FOR-NEXT loop with a variable containing the input number for its upper
limit, a PRINT followed by a star and semicolon, and spaces between the
stark, effected by a statement such as "PRINT '* ';" rather than "PRINT
'*';". For each student who completed problem 4 or nearly completed it
(interrupted by the end of the period), the student's performance on sach one

of these critical program components was scored. Accordingly, the sample

episode above would be scored as part of the INPUT component. Similar
critical components were defined for all the problems and students were
ocored accordingly on any problem they completed or almost completed.

Level. The performance of each student an a given program component was

coded according to the student's handling of four major programming levels:
decomposition, need formulation, command finding, and application.
Decomposition referred to Teal it ing the need for the program component in

the case of Problem 4 and INPUT, realizing that some way of getting
information in was required. Need formulation, referred to formulating in

www.manaraa.com

Loci of Difficulty 7

sharper terms what the component should do -- in the case of Problem 4 saying

something like, "I need a command that reads an input from the user."
Command ;Iodine referred to retrieving an appropriate command -- Haim In the

case of the example. AmWeation referred to following through with correct
code using the command -- a correct INPUT line in this case. Considering
again the sample episode, the student's effort to retrieve INPUT is an
example of command finding.

The level scheme provided one approach to gauging the extent to which
students suffered from weaknesses in their BASIC "database" versus higher
order difficulties as in decomposing the programming problem. The four
levels were considered a logically necessary sequence for any program
component. All four levels were given distinct scores for each critical
comma, even though a student might not display any overt sign of passing
through a particular level. Scoring each level was possible because (a) a
student always completed the component, even if with help from the
experimenter, old (b) in those cases where a student gave no overt evidence
of a level, it was scored by inference in light of the student's performance

on a subsequent level. For example, if a student immediately wrote a correct

command line -- am act at the application level -- by inference the scorers
classified the decomposition, need formulation, and command finding levels as
"spontaneously correct" (see below for the meanings of these terms). For a

catrasting example, a student requiring the experimenter's help with each
level in turn would be scored accordingly at each level.

Nolo. Students' responses were classified according to the help
required to elicit them -- spontaneous, or with the help of a prompt. hint.

or provide. This classification did not assume that a subject's response to

a prompt, hint, or provide was correct; by definition, responses to provides

were always correct since the experimenter directly provided the needed
information, but responses to. 9rompte and hints were often incorrect. Note

that the classification of help from the experimenter as prompt, hint, or

provide was done from the protocols, without reference to the experimenter's
original intentions, which were in any case not indicated in the protocols..
Referring to the sample case again, the students' retrieval of INPUT would be
classified as in response to a prompt, because the experimenter's question,
"Can you think of another command you might use?" is a question not betraying
any particular knowledge of the answer, a question a student under similar
circumstances might well ask himself or heeself.

Correctness. Finally, the correctness of a response was classified into

one of several categories: EattlaLomissions -- failure to include a needed

element in a response, as for instance in omitting a semicolon on Mirror
leaving out the FOR-NEXT altogether; mieratioas -- cases where a syntactic
element from one command intruded into another, as for example in PRINT S
STEP 2; sequence gtrors -- where an element was mispositioned in a mimes,
as in placing one after another FOR-NEXT loops that should be nested;
mistakes -- a catch-all category for erroneous responses not otherwise
classified. In the example, the subject's responses! INPUT would be
classified as correct; the subject's prior response of READ would be
classified as a migration (of READ into the territory of INPUT). The scoring
would also note that the student spontaneously rejected this migration.

10

www.manaraa.com

The 2.1.1.kmopztram.

The principal scorer went through each protocol, looking for responses and
classifying them into a set of 4 x 4 charts, one for each critical component
of each problem, with the help dimension across the top and the level
dimension down the side. An entry in a chart included a letter code tc
indicate correctness and an annotation to indicate what response in the
protocol the entry referred to. A second scorer scored a randomly selected
subsample of the protocols independently of the first scorer. After the

wiapacirof Interlake agreement was established (see below), the principal
scorer's classifications were adopted for all further analyses.

Teacher ' s erodes. maim_

The experimenters collected from the teacher at the end of the term the
students' final course crake. lasyalso collected the teacher's ratings for
each student on a three point scale (low, medium, high) for three attitudinal

factors: motivation, enjoyment, and persistence. The teacher was encouraged
to take these terns in their everyday senses and was given no more specific

guidance about their interpretation. Both the grades and the attitude
ratings inevitably raise issues about interjudge agreement, since there was

no second grader or rater for a crosscheck. However, we felt that the
teacher's professional role and year-long familiarity with the students put

her Ina good position to assign objective grades and ratings. Also, as the

analysis will reveal, substantial relationships emerged between the teacher's

grades and ratings and the data gathered by the experimenters, forming a
coherent picture *chat argues indirectly for the soundness of the grades and

ratings.

Results

Coding reliabilit

Occasionally, the first scorer coded a response missed by the second
scorer or vice versa, but this did not happen frequently. Disagreement as to

which critical component a response belonged to was quite rare. Disagreement

as to level of response was somewhat more common. Degree of agreement was

calculated by treating the sequence decomposition. 220.descriptinea_command
findins,onolicationas a four-point scale and calculating a Pearson
correlation coefficient; the result was .92 (11.453, pc.001). Degree of
accord regarding help was calculated bathe someway; the correlation was .12

(N1.143, pc.001). Agreement as to the correctness of a response was very
high, but this reflected the fact that very often students' responses were
straightforwardly correct and both scorers would so classify them. To
provide a more stringent test, the scorers' agreement was axamined on those
responses that the scorers both classified into one or swathe/ of the
noncorrect categories; there, the second scorer agreed with the first 76% of

the time. Although this figure is not high, it is much greater than the
chance rate of 25%, assuming equal frequency of the categories. In general,

then, a very satisfactory level of interscorer agreement was obtained.

11

www.manaraa.com

Loci of Difficulty

itittan.kama.nrismass.ffs inurvi*w ad, jg fiat

It is natural to winder *bather the studsnts' programming performance eurirlf
the interviews adequately reflected their general programmiri Performance.
Night not the unusual conditions of interviewing -- a aiminge interviewer.
the frequent questions, even the help offered by the interviewer -- distort
students' normal rank order of programming performance? To examine this
matter, indices of the students' programming performance caring the interview

were compared with their final course grades. For programming performance
during the interview, we used three indices: the number of responses that
were spontaneously correct, the number of resolutions that bad to be

provided, and the number of the final problems a student attempted. The
figures were drawn from applications level responses, because, as will be
seen later, subjects made the most mistakes at this level and brace their

number of correct responses would be a more individuating measure at that
level than for responses pooled across levels.

The first row of Table 1 presents the correlaVon coefficients
calculated between these variables. As the table shows, the correlation
coefficients cluster arland .57. indicating a distinct relation between the
students' interview performance and their overall course performance. To be

sure, this magnitude of correlation is far from perfect, but, given such
intervening factors as the interview format itself, students' response to
instruction subsequent to the interview, and accidents of performance both on
the interview aid in the course, these correlations argue that at least the
interview format did not "reshuffle" students' relative levels of
performance. It may be objected that the interview format perhaps led many
students to perform considerably below their norms, while preserving relative

levels of performance. We have no formal evidence on this point, but can
remark informally that whili some students appeared nervous, others did not,
and that, since the :interview format itself provided direct support for
students' problem-solving prot.sses, a net disruptive effect appears
unlikely.

Insert Table 1 about here

Perforisanca jn relating tiattitudial fliatsma.

As noted earlier, the teacNer provided attitudinal ratings for each student
on tho diesmsions motivation, enjoyment, and persistence. The remainder of

Table 1 displays the correlations between these ratings and the measures a
performance during th. interview. The correlations fall in the neighbom

of .5. the results soma that student's effectiveness during the interview
related to the student's general attitudes to programming. As one would

expect, more competent programmers are more motivated, enjoy programming

mars. Ind dieptay more persistence.

ti adding that the ' ttitudinal variables correlated even more

sti arse grade, in the neighborhood of .7. This means that they

re: =dre strongly to overall ,course performance. This appears to

jaw evidence of a connection between attitudes and performance.
4.point o3 caution, one should remember that all ratings were

provided . the teacher without any second rater. Although the pattern of

i2

www.manaraa.com

Table 1

QuttlAII2a_Qstill2ltata_klatta_Qlall_EttIstmana

And_itittrxInUtrisrmAno.

Class Performance

Teacher's
Assessments

Interview Performance

Number of Number of Number (1-8)
Spontaneously Solutions of Final
Correct Provided by Problem
Responses Experimenter Attempted

Course Grade .57**** -.56**** .57****

Motivation .51** -.65**** .39*

Enjoyment .38* -.56**** .25

Persistence .48** -.52*** .39*

* p(.05, ** p(.025, *** p<.01, **** p(.005, one-tailed test, N =20.

13

www.manaraa.com

Loci of Difficulty 10

results is plausible, conceivably the attitude ratings reflect a halo effect

from competence or vice versa or both.

The concentration of difficulties at various levels

As mentioned earlier, one aim of the present experiment was to determine the

degree of difficulty presented by the four levels of programming identified

-- decomposition, need formulation, command finding, and application. This

would help determine the extent to which students suffered from inadequacies

of their BASIC "database" versus higher order difficulties. One relevant

calculation examined at each level the percentage of critical components
resolved spontaneously, rather than by way of a prompt, hint, or provide.

The percentages for decomposition, need formulation, command finding, and
application respectively were 92, 78, 83, and 64.

We asked whether these figures differed genuinely or merely reflected
variations in sampling the same underlying distribution. A 4 x 2 chi square
test would have been inappropriate because of implicit constraints on the
marginals resulting from details of the scoring system. Instead, we obtained

a best bet underlying distribution by pooling the tallies over decomposition,

need formulation, command finding, and application; we performed chi square
tests comparing this theoretical distribution with each of the four actual
distributions, rejecting the null hypothesis that all these percentages
reflected the same underlying distribution (largest chi square = 39, df=1,

p<.001). To underscore the significance of the percentages, 92% of the time

subjects resolved a matter spontaneously at the decomposition level; in
contrast, they resolved a matter at the application level spontaneously only

64% of the time. The numbers demonstrate that subjects encountered the most

difficulties at the application level.

Another approach to comparing levels was to consider whet percentage of

subjects' difficulties occurred at the decomposition, need formulation,
command finding, and application levels. These figures, respectively, were

10, 25, 18, and 47%. A chi square test reflecting the null hypothesis of an
equal distribution (25, 25, 25, 25) rejected the null hypothesis (chi square

= 73, df=3, p<.001). In summary, nearly half of subjects' difficulties
overall occurred at the application level.

It is natural to ask whether the more able subjects encountered
relatively fewer difficulties at the application level and more at the
decomposition, need formulation, and command finding levels. This might

occur because the more able programmers would have mastered the details of

commands better and so encounter fewer difficulties at the applications
level; also, they would tackle the more difficult problems in the sequence,

which presented more challenges of decomposition and need formulation. This

question was examined by computing the percentage of difficulties at the
application level for each subject and correlating this figure with course
pickax' with the problem number (1-8) of the final problem attempted, two
reasonable indices of overall competence as indicated earlier. The
correlations, .06 and -.31 respectively, did not approach significance,
showing that the difficulties of the more able subjects occurred no less
often at the applications level than those of the less able subjects.

Another natural question concerns whether those subjects who dealt
successfully with at least the early phases of approaching the programming
problems -- decomposition and need formulation -- approached the problems in

i4

www.manaraa.com

Loci of Difficulty 11

the same way. After all at least in principle, the programming problems
could be decomposed in more than one way, leading to divergent approaches.
This question was pursued not by a formal analysis but simply by inspecting
over half the protocols for any sign of divergent decompositions of the

problems. No such cases emerged. It seems appropriate to conclude that
divergent approaches were either not apparent or not attractive to the
students.

Effectiveness of prompts and hints

The analysis exsained the extent to which prompts and hints were effective in

helping atudents over difficulties they encountered. Pooling the data over

all four levels, we examined the percentage of time for the entire sample
that a prompt, a hint, or a provide resolved a difficulty. The figures were

33%, 15%, and 52% respectively. In summary, about half the time a prompt or

a hint assisted a student in resolving a difficulty, while the mite the
time a provide proved necessary. The effectiveness of prompts and hints
indicated that subjects possessed "inert knowledge" that they had not
initially been able to use, since both prompts and hints required subjects to
add information of their own in order to resolve the difficulty.

We also examined whether the more able programers were more responsive

to prompts and hints than the less able programmers. For each student, the

percentage of difficulties resolved by prompts was calculated. Also, for
each student the percentage of difficulties not resolved by prompts but
resolved by hints was calculated. These figures were correlated with final

course grade for a' measure of programming ability. The correlation
coefficients were .28 and .25, neither of which differed significantly from

0. It appears that the more able programmers were not significantly more

responsive to prompts. Of course, one must remember that the more able
programmers were reacting tc prompts given in the context of more difficult

problems.

The types of difficulties that occurred

The data were pooled to examine the relative frequency of the four error
types. There were 359 errors classified in all, distributed as follows:
omissions, 37%; migrations, 27%; sequence errors, 8%; mistakes, 28%. We

examined whether this distribution of error types varied according to whether
the error .occurred spontaneously or in response to a prompt or hint. No

significant difference among these three conditions emerged.

We also examined whether the distribution of error types varied with
level: decomposition, need formulation, command finding, and application.
There were substantial differences, but they were not psychologically
interesting, reflecting instead the structure of the task and coding system.
Only one migration occurred at the decomposition swinged formulation levels,
because before reaching the command finding level subjects rarely had
mentioned any commands or command structures, so there was nothing that could

be said to have migrated. Sequence errors only occurred at the applications
level, because the placement of commands in the program was considered to be

an applications-level matter.

The distribution of error types indicates that one cannot interpret the
students' problems with their BASIC knowledge base just as a matter of

15

www.manaraa.com

LOCI. of Difficulty 14

outright knowledge gaps about some commands. Omissions accounted only for

37% of the data. Migrations, sequence errors, and mistakes all indicated
garbled rather than entirely missing knowledge about the program elements in

question.

Confidence and competence in relation to gender.

In light of concerns about malts' and females' attitudes and achievement in

ouch traditionally male areas as mathematics e..4 computers (cf. Badger, 1981;

Mask.but, in press), we examined the data for contrasts between the males and
females on final grade, motivation, enjoyment, persistence, responsiveness to
prompts, responsiveness to hints, final problem attempted, and initial
problem. For all but the last variable, no significant differences emerged.
There were indications that females found a prompt helpful a slightly lower
percentage of times than did males, but this was at a marginal level of
significance, especially considering the number of tests performed.

A marked contrast appeared between the Initial problem chosen by females

with that chosen by males. The average number of the initial problem
selected by the females was 1.7 and by the males 4.2, a statistically
significant difference (t test, p<.003). There was, however, a
nonsignificant difference between females' and males' final problem, the
females averaging slightly lower. To test whether females indeed chose
easier Initial problems without displaying a difference in ability to cover
problems, we conducted an analysis of variance on initial problem with final

problem as a covariate. The results confirmed the conclusions from the t

test (F=7.3, df=1, p<.015). It appears that the females were less confident,

the males more so, in their selection of an initial problem. This points to

an attitudinal difference that does not appear when males and females are

compared on the other indices of ability or attitude.

Discussion

The analysis of the data provided information about loci of difficulty in
three aspects of student's programming behavior: attitudes, knowledge base,

and problem-solving strategies.

Attitudes

The analysis disclosed the relation one would expect between measures of
programming competence and attitude: More competent programmers, as measured

by indices derived both from the interview and course grade, tended to
display more motivation, enjoyment, and persistence as rated by their
teacher. In addition, an interesting gender contrast appeared. While not

differing in competence or other respects, female students evinced less
confidence then male students by selecting starting problems that were less

challenging. This finding is consonant with the idea that, in areas such as
mathematics and computers, attitudinal factors may distinguish males from
females in our culture more so than do matters of ability (cf. Badger, 1981;

Makin', in press).

However, the relations between attitude and competence allow ao simple

inference as to cause. It is certainly possible that students' attitudes

16

www.manaraa.com

LOCI. OK UliKaCuaty au

reflect their underlying competence in dealing with the subject matter of
programming, which may in turn reflect general intellectual competence; Linn
(1985) reports that success in programming relates considerably to IQ. On

the other hand, more motivation, enjoymult, and persistence could signal the
presence of a more active conception of learning that in turn fosters more

competence (Dweck & Bempechat, 1980; Dweck & Licht, 1980; Belson, 1985).
Further support for this idea comes from our observation that some students
tend to be "stoppers," disengaging from a problem as soon as difficulties
appear, while others tend to be "movers," continuing to attack a problem that

presents difficulties, although not necessarily effectively (Perkins,
Hancock, Hobbs, Martin, & and Simmons, in press). In general, it seems

unlikely that the causal arrow would run only in one direction between
attitudes and competence. Most plausibly, attitudes and competence would

reinforce one another in a kind of loop. The results suggest what should be

axiomatic in education in any case: Instruction needs to take into account
not only how students perform but how they feel about their learning
activities.

Knowledge base

It would be easy to consider programming as a challenge principally to
students' problem-solving abilities, since, by the measure of any natural
language, programming languages present relatively few primitive terms to be

mastered. As noted at the outset, programming is precision-intensive, but
this might not pose that much of a problem in light of the limited "database"

required. However, the analysis offered ample evidence that students are
troubled considerably by inadequacies in their knowledge Lase. In

particular, students displayed more difficulties at the application level,
where details in the knowledge of BASIC figured more, than at any other
level. Omission errors and migration errors were commonplace, pointing to
problems of missing and garbled knowledge of BASIC.

The contemporary research on expertise leads one to expect
knowledge-base problems in performance. Good problem solving in a domain

appears to depend upon a repertoire of schematic problem types and solution

types which are specific to the domain (e.g. Chase & Simon, 1973; Chi,
Feltovich, & Glaser, 1981; Larkin, McDermott, Simon, & Simon, 1980;
Schoenfeld & Herrmann, 1982). The importance of such schecnta has been
demonstrated for programming specifically (Schneiderman, 1976; Soloway &

Ehrlich, 1984). However, it must be emphasized that the knowledge problems
detected in this experiment did not seem to be of the order of the schemata

detected in such studies. Rather, many subjects fall afoul of quite
elementary aspects of writing individual command-iines.-

The analysis also demonstrated that characterizing students' shortfall
in knowledge as a matter of "missing knowledge" would be simplistic. The

students often had relevant knowledge but failed to bring it to bear, as
demonstrated by the frequent success of prompts and hints in marshalling

students' "inert knowledge." Inert knowledge is known to be a problem in

other contexts of composition besides programming (Bereiter & Scardemalia,

1985). Inert knowledge may be considered a case of failure of transfer,
attributable not only to the knowledge representation but to whether the
learner mindfully seeks opportunities for transfer (Belmont, Butterfield, &
Ferretti, 1982; Salomon & Perkins, 1984; Perkins & Salomon, in press).

Sequence errors and migration errors also point to problems of knowledge that

are not straightforwardly interpretable as missing knowledge.

17

www.manaraa.com

Loci of 'Difficulty 14

Elsewhere, we have discussed a four-uay classification of, students'
knowledge shortfalls in programming as pissing knowledge. inert knowledge.
misplaced knowledge, and conglomerated knowledge. Missing knowledge refers

to knowledge that a student lacks access to, even upon prompting. Inert
knowledge is knowledge that surfaces upon prompting or hinting or in other

ways but was not initially retrieved. Misplaced knowledge means knowledge
that intrudes into inappropriate contexts, as with the present migration

category. Conglomerated knowledge refers to students' occasional use of
anomolous combinations of command elements pulled from two or more contexts.

We introduced a new term, "fragile knowledge," to summarize the four and
underscore the point that the weaknesses in students' knowledge base requires

a sharper characterization than "missing knowledge" alone affords (Perkins &

Martin, 1986).

Problem-solving strategies

The effectiveness of prompts in helping students over difficulties argues
that students fail to use important elementary strategies for problem
solving. By definition, prompts were advice a student might well give
himself or herself. Also, the prompts amount to elementary problem-solving
strategies --askirgroneself what the current problem is, what commands might
help, whether what one has just written does what one supposes, and so on.

The elementary character of these strategies deserves emphasis. We are not

addressing the somewhat more sophisticated strategies often discussed in
contexts of mathematical problem solving, such as constructing a visual
representation of a problem, reducing a problem to prior problems, or
checking a solution through special cases (Polya, 1954, 1957; Schoenfeld,
1980; Wickelgren, 1974). To be sure, such strategies are certainly relevant

to the context of programming; indeed, Soloway and Ehrlich (1984) have

commented on the role of some of them. However, the present findings suggest

that students do not help themselves enough with quite elementary
attention-focusing strategies in dealing with programming problems.

It must be acknowledged that the efficacy of prompts in the interview
contexts does not in itself demonstrate that students could learn to prompt

themselves and thereby improve their autonomous performance. However, at

least the finding suggests that this might be possible. A contrary finding

-- that prompts had no impact on subjects' performance -- would hold out
little hope of students learning to guide their problem-solving processes
with more art.

Conclusion

The results of this experiment argue that novice programmers' difficulties

are far from monolithic. One might suppose at first that programming
principally challenged students' problem-solving abilities. In fact, the

results give evidence of loci of difficulty in attitudes and mastery, of the
relevant knowledge base as well as in elementary problem-solving strategies.

The results also argue that students are troubled by some difficulties

of a rather simple character. As noted earlier, other research has shown the

relevance of a schematic repertoire of problem and solution types and of
certain problem-solving heuristics to activities like programming, problem

solving in mathematics and physics, and chess play. However, our findings

18

www.manaraa.com

Loci of Difficulty 15

suggest that, at least in programing, shortfalls in knowledge and strategies
much simpler than those usually discussed may impair novices' efforts
considerably. We may need to reassess our intuitions about what is
difficult: matters that one would not initially think of as difficult turn
out to be so for the novice. It is even conceivable that an approach to
programming instruction which sought to inculcate more sophisticated schemata

and strategies, without addressing these elementary matters, would falter for

lack of attention to them. Perhaps curriculum design efforts aiming to help

students with the learning and problem-solving processes involved in
programming should begin at quite an elementary level.

In particular, students might be encouraged to self-prompt themselves
with the sorts of questions that focus attention on helpful aspects of
problematic situations. Instruction might be designed so as to help students

to achieve more consolidated, less fragile knowledge of the details of the
computer language in question. This may require giving students a better
mental model of the computer (DuBoulay, O'Shea, & Monk, 1981; Mayer, 1976,
1981) as well as systematic frameworks for learning (Perkins, 1986).
Finally, the findings recommend instruction in programming that recognizes
the attitudinal problems that students may have and tries to boost students'

attitudes directly by whatever means seem likely. In further research at the

Educational Technology Center, we are investigating these avenues.

www.manaraa.com

Loci of Difficulty 16

References

Badger, E. (1981). Why aren't girls better at maths? Educational Research

24, 11-23.

Belmont, J. M., Butterfield, E. C., & Ferretti, R. P. (i2e2). To secure
transfer of training instruct self-management skills. In D. K. Detterman & R.

J. Sternberg (Eds.), How and how much can intelligence be increased? (pp.

147-154). Norwood, New Jersey: Ablex.

Bereiter, C., & Scardamalia, M. (1985). Cognitive coping strategies and the
problem of inert knowledge. In S. S. Chipman, J. N. Segal, & R. Glazer
(Eds.), Thinking and learning_ skills Vol. 2: Current research and open

Questions (pp. 85-80). Hillsdale, New Jersey: Erlbaum.

Chase, N. C., & Simon, H. A. (1973). Perception in chess. Cognitive
Psychology, 41_55-81.

Chi, N., Feltovich, P., & Glaser, R. (1981). Categorization and
representation of physics problems by experts and novices. Cognitive Science

5 121-152.

Clements, D. H. (1985a, April). Effects of Lorawrograimming on cognition,
etacognitive skills and achievement. Presentation at the American
Educational Research Association conference, Chicago, Illinois.

Clements, D. H., & Gullo, D. F. (1984). Effects of computer programming on
young children's cognition. Journal of Educational Psychology, 76(6),

1051-1058.

DuBoulay, B., O'Shea, T., & Monk, J. (1981). The black box inside the glass
box: Presenting computing concepts to novices. International Journal of
Man- Machine Studies 141,237 -249.

Dm*, C. S., & Bempechat, J. (1980). Children's theories of intelligence:
Consequences for learning. In S. G. Paris, G. M. Olson, & H. W. Stevenson
(Eds.), Learning and motivation in the classroom (pp. 239-256). Hillsdale,
New Jersey: Lawrence Erlbaua Associates.

Dwedc, C. S., & Licht, B. G. (1980). Learned helplessness and intellectual
achievement. In J. Garber & N. Seligman (Eds.), Human helplessness. New York:

Academic Press.

Hawkins, J. (in press). Computers and girls: Rethinking the issues. Journal

of Sex Roles.

20

www.manaraa.com

Loci of Difficulty 17

Kurland, D. N.., Pea, R. D., Clement, C., & Newby, R. (in press). A study of
the development of programming ability and thinking skills in high school
students. Journal of Educational Computing Research.

Larkin, J. H., McDermott, J., Simon, D. P., & Simon, H. A. (1980). Modes of
competence in solving physics problems. Cognitive Science 4 317-345.

Linn, XL C. (1985). The cognitive consequences of programming instruction in
classrooms. EdIational Researcher,,14 4.14 -29.

Mayer, R. E. (1978). Some conditions of meaningful learning for computer
programming: Advance organizers and subject control of frame order. Journal
of Educational Psychology. 04..143-150.

Mayer, R. E. (1981). The psychology of how novices learn computer
programming. Computing Surveys, 13(11), 121-141.

Pea, R. D., & Kurland, D. N. (1984a). On the cognitive effects of learning
computer programming. New Ideas in Psychology, 2(2), 137-168.

Pea, R. D., & Kurland, D. N. (1984b). &go...programming and the development of

planning skills (Report no. 16). New York: Bank Street College.

Perkins, D. N. (1988). Knowledge as design. Hillsdale, New Jersey: Lawrence

Erlbaum Associates.

Perkins, D. N., Hancock, C., Hobbs, R., Martin, F., and Simmons, R. (in
press). Conditions of learning in novice programmers. Journal of Educational
Computing Research.

Perkins, D. N., & Martin, F. (1986). Fragile knowledge and neglected
strategies in novice programmers. In E. Soloway & S. Iyengar (Eds.),
Empirical studies of programmers. Norwood, New Jersey: Ablex.

Perkins, D., & Salomon, G. (in press). Transfer and teaching thinking. In J.

Bishop, J. Lochhead, & D. N. Perkins (Eds.). Thinking: Progress in research
and teaching. Hillsdale, New Jersey: Lawrence Erlbaum Associates.

Polya, G. (1954). Mathematics and plausible reasoning (2 vols.). Princeton,

New Jersey: Princeton University Press.

Polya, G. (1957). How 1,1 !solve it: A new aspect of mathematical method (2nd

ed.). Garden City, New York: Doubleday.

www.manaraa.com

Loci of Difficulty 18

Salomon, G., & Perkins, D. N. (1984, August). Rocky roads to transfer:
RethinkipLmechanisms of a neglected phenomenon. Paper presented at the
Conference on Thinking, Harvard Graduate School of Education, Cambridge,

Massachusetts.

Schneiderman, B. (1976). Exploratory experiments in programmer behavior.
International Journal of Computer and Information Sciences il_123-143.

Schoenfeld, A. H. (1980). Teaching problem-solving skills. American
Mathematical_ Monthly, 8?,. ,794 -805.

Schoenfeld, A. H. (1982). Measures of problem-solving performance and of
problem-solving instruction. Journal for Resemphin Mathematics Edmation,

13(1), 31-49.

Schoenfeld, A. H. & Herrmann, D. J. (1982). Problem perception and knowledge

structure in expert and novice mathematical problem solvers. Journal of
Experimental Psychology: Learning, Wmom_and Cognition, 8 434-494.

Soloway, E., & Ehrlich, K. (1984). Empirical studies of programming
knowledge. IEEE Transactions on Software Engineering, SE-10(5), 595-609.

Wickelgren, W. A. (1974). How to solve problems: Elements of a theory of
problems and problem solving. San Francisco: W. H. Freeman and Co.

Zelman, S. (1985, April). Individual differences and thecomatmlearning
environment: Motivational constraints to learning LOGO. Presented at the
American Educational Research Association Annual Meeting, Chicago, Illinois.

